細胞分子病態医学グループの研究内容

生活習慣病に共通するダイナミックな臓器連関と慢性炎症に着目し、免疫代謝とエピジェネティクスの観点から病態解明を目指すとともに、新規治療法への展開を進めています

大学院外国人研究生の募集について

当研究室では大学院外国人研究生の募集をしています。入学希望の方は、 下記メールアドレスにご連絡ください。
募集は2025年4月に行います。

Join the Lab Team
as a Postgraduate Foreign Research Student, Graduate School of Medicine, The University of Tokyo.

Our laboratory is eager to welcome a foreign research student interested in investigating cardiovascular disease mechanisms and identifying novel therapeutic targets. We are looking for highly motivated individuals to join our team.

Opportunities:
・Work within a dynamic research environment at the forefront of advanced cardiology.
・Contribute to groundbreaking studies and potentially apply as a student at the Graduate School of Medicine, The University of Tokyo.

Eligibility Criteria:
・Applicants must hold an academic degree equivalent to a bachelor’s or master’s degree from a non-Japanese university.

Application Timeline for Autumn 2025:
Recruitment will be conducted on the website in April 2025.

Contact Information:
・Professor Katsuhito Fujiu
・Deparment of Advanced Cardiology, The University of Tokyo
・Email: heartrhythm-office@umin.ac.jp

We encourage all interested candidates to review their CVs and submit their applications by the specified deadlines. Our laboratory staff will review the applications and contact selected candidates for further steps.

 

研究内容

1. 免疫細胞の心臓における生理的役割と疾患発症への関与
2. 神経系による循環器制御機序の解明とその破綻機構の解明
3. 心臓線維芽細胞の生理的作用と疾患発症への関与
4. 心臓と他臓器との臓器連関とその破綻による心疾患発症機序
5. 個体の老化の発症機序の解明
6. ビッグデータ解析による新規治療標的同定
7.AI・数理モデルを用いた新規細胞診断・治療機器の開発


心不全のストレスが骨の中の造血幹細胞に蓄積し、再発や腎臓病、サルコペニアの発症に関与する  心不全の際に、そのストレスが脳や神経系を介して、造血幹細胞に蓄積される。ストレスが蓄積した造血幹細胞から様々な臓器に供給される免疫細胞は、各臓器の保護作用を失い多臓器不全が生じる。
プレスリリース

Nature Reviews Immunologyでの解説


心不全時の「骨の中の神経障害」によって生じるTGFβの減少が造血幹細胞にストレスを蓄積させる
心不全になると骨の中にある交感神経の機能が低下し、造血幹細胞を正常に維持している活性型TGFβが不足し、造血幹細胞の遺伝子発現を制御するエピゲノムの変化として、ストレスが蓄積される。  

 

プレスリリース

Nature Reviews Cardiologyでの解説

主要論文

Nakayama Y, Fujiu K, Oshima T, Matsuda J, Sugita J, Matsubara TJ, Liu Y, Goto K, Kani K, Uchida R1, Takeda N, Morita H, Xiao Y, Hayashi M, Maru Y, Hasumi E, Kojima T, Ishiguro S, Kijima K, Yachie N, Yamazaki S, Yamamoto R, Kudo F, Nakanishi M, Iwama A, Fujiki R, Kaneda A, Ohara O, Nagai R, Manabe I, Komuro I, Science Immunology, 2024, doi: 10.1126/sciimmunol.ade3814

Fujiu K and Manabe I, Nerve–macrophage interactions in cardiovascular disease. Int Immunol. 2021 doi:10.1093/intimm/dxab036

Sugita J, Fujiu K, Nakayama Y, Matsubara T, Matsuda J, Oshima T, Liu Y, Maru Y, Hasumi E, Kojima T, Seno H, Asano K, Ishijima A, Tomii N, Yamazaki M, Kudo F, Sakuma I, Nagai R, Manabe I, Komuro I. Cardiac macrophages prevent sudden death during heart stress. Nat Commun. 2021 Mar 26;12(1):1910. doi: 10.1038/s41467-021-22178-0.

Hasumi E, Fujiu K, Chen Y, Shimuzu Y, Oshima T, Matsunaga H, Matsuda J, Matsubara TJ, Fukuma N, Yuziang Liu, Sugita J, Nakayama Y, Saga A, Oguri G, Kojima T, Maru Y, Shoda M, Komuro I, Heart failure grading using single-lead electrocardiography, medRxiv. doi: 10.1101/2020.10.08.20209700

Nakayama Y, Fujiu K, Yuki R, Oishi Y, Morioka M, Isagawa T, Oshima T, Matsubara T, Sugita J, Kudo F, Kaneda A, Endo Y, Nakayama T, Nagai R, Komuro I, Manabe I, A long noncoding RNA regulates inflammation resolution by mouse macrophages through fatty acid oxidation activation, Proc. Natl. Acad. Sci. USA, Jun 2020, 202005924. doi: 10.1073/pnas.2005924117

Adachi H, Kawamura Y, Nakagawa K, Horisaki R, Sato I, Yamaguchi S, Fujiu K, Waki K, Noji H, Ota S, Use of Ghost Cytometry to Differentiate Cells with Similar Gross Morphologic Characteristics, Cytometry, Cytometry A. 2020 Apr;97(4):415-422. doi: 10.1002/cyto.a.23989.

Asakawa M, Itoh M, Suganami T, Sakai T, Kanai S, Shirakawa I, Yuan X, Hatayama T, Shimada S, Akiyama Y, Fujiu K, Inagaki Y, Manabe I, Yamaoka S, Yamada T, Tanaka S, Ogawa Y, Upregulation of cancer-associated gene expression in activated fibroblasts in a mouse model of non-alcoholic steatohepatitis, Sci Rep, 2019 Dec 20;9(1):19601. doi: 10.1038/s41598-019-56039-0.

Okamoto H, Yoshimatsu Y, Tomizawa T, Kunita A, Takayama R, Morikawa T, Komura D, Takahashi K, Oshima T, Sato M, Komai M, Podyma-Inoue KA, Uchida H, Hamada H, Fujiu K, Ishikawa S, Fukayama M, Fukuhara T, Watabe T. Interleukin-13 receptor α2 is a novel marker and potential therapeutic target for human melanoma. Sci Rep. 2019 Feb 4;9(1):1281.

Ota S, Horisaki R, Kawamura Y, Ugawa M, Sato I, Adachi H, Yamaguchi S, Fujiu K, Waki K, Noji H, Response to Comment on “Ghost cytometry”, Science, 2019, Vol. 364, Issue 6437, eaav3136.

Ota S, Horisaki R, Kawamura Y, Ugawa M, Sato I, Hashimoto K, et al. Ghost cytometry. Science. 2018 Jun 15;360(6394):1246-51.

Fujiu K, Shibata M, Nakayama Y, Ogata F, Matsumoto S, Noshita K, et al. A heart-brain-kidney network controls adaptation to cardiac stress through tissue macrophage activation. Nat Med. 2017 May;23(5):611-22.

Ogata F, Fujiu K, Matsumoto S, Nakayama Y, Shibata M, Oike Y, et al. Excess Lymphangiogenesis Cooperatively Induced by Macrophages and CD4(+) T Cells Drives the Pathogenesis of Lymphedema. J Invest Dermatol. 2016 Mar;136(3):706-14.

Hachiya R, Shiihashi T, Shirakawa I, Iwasaki Y, Matsumura Y, Oishi Y, et al. The H3K9 methyltransferase Setdb1 regulates TLR4-mediated inflammatory responses in macrophages. Sci Rep. 2016 Jun 28;6:28845.

Tan X, Fujiu K, Manabe I, Nishida J, Yamagishi R, Terashima Y, et al. Choroidal Neovascularization Is Inhibited in Splenic-Denervated or Splenectomized Mice with a Concomitant Decrease in Intraocular Macrophage. PLoS One. 2016;11(8):e0160985.

Tan X, Fujiu K, Manabe I, Nishida J, Yamagishi R, Nagai R, et al. Choroidal neovascularization is inhibited via an intraocular decrease of inflammatory cells in mice lacking complement component C3. Sci Rep. 2015 Oct 28;5:15702.

Noda S, Asano Y, Nishimura S, Taniguchi T, Fujiu K, Manabe I, et al. Simultaneous downregulation of KLF5 and Fli1 is a key feature underlying systemic sclerosis. Nat Commun. 2014 Dec 12;5:5797.

Fujiu K, Manabe I, Nagai R. Renal collecting duct epithelial cells regulate inflammation in tubulointerstitial damage in mice. J Clin Invest. 2011 Sep;121(9):3425-41.

Iwata H, Manabe I, Fujiu K, Yamamoto T, Takeda N, Eguchi K, et al. Bone marrow-derived cells contribute to vascular inflammation but do not differentiate into smooth muscle cell lineages. Circulation. 2010 Nov 16;122(20):2048-57.

Oishi Y, Manabe I, Tobe K, Ohsugi M, Kubota T, Fujiu K, et al. SUMOylation of Kruppel-like transcription factor 5 acts as a molecular switch in transcriptional programs of lipid metabolism involving PPAR-delta. Nat Med. 2008 Jun;14(6):656-66.

Nishimura G, Manabe I, Tsushima K, Fujiu K, Oishi Y, Imai Y, et al. DeltaEF1 mediates TGF-beta signaling in vascular smooth muscle cell differentiation. Dev Cell. 2006 Jul;11(1):93-104.

Oishi Y, Manabe I, Tobe K, Tsushima K, Shindo T, Fujiu K, et al. Kruppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. Cell Metab. 2005 Jan;1(1):27-39.

Fujiu K, Manabe I, Ishihara A, Oishi Y, Iwata H, Nishimura G, et al. Synthetic retinoid Am80 suppresses smooth muscle phenotypic modulation and in-stent neointima formation by inhibiting KLF5. Circ Res. 2005 Nov 25;97(11):1132-41.

   このページの先頭へ