細胞分子病態医学グループの研究内容

生活習慣病に共通するダイナミックな臓器連関と慢性炎症に着目し、免疫代謝とエピジェネティクスの観点から病態解明を目指すとともに、新規治療法への展開を進めています

大学院外国人研究生の募集について

当研究室では大学院外国人研究生の募集をしています。入学希望の方は、
下記メールアドレスにご連絡ください。

Join the Lab team
as an International research student program in the graduate school of medicine, the University of Tokyo.

→now closed until April 2021

We are seeking for highly motivated students and post-docs. Laboratory staffs review their CVs and contact candidates. This program starts in April or September every year.
The selection for an international research student and post-docs are competitive.
International research students also have the opportunity to apply to the student of the graduate school of medicine, the University of Tokyo.

CONTACT 
heartrhythm-office@umin.ac.jp
03-3815-5411
Mon. 8 am – 5 pm

 

研究内容

1. 心臓マクロファージの生理的役割と疾患発症への関与
2. 心臓線維芽細胞の生理的作用と疾患発症への関与
3. 心臓と他臓器との臓器連関とその破綻による心疾患発症機序
4. 個体の老化の発症機序の解明
5. メカニカル刺激と転写調節メカニズムの解析
6. 摂食の調節機構の解析
7. メタボリックシンドロームと心血管疾患発症メカニズムの解析
8. 新規細胞診断・治療機器の開発

これらの課題に対して、細胞レベル、臓器レベル、個体レベルでゲノム、エピゲノム、転写調節、タンパク発現の網羅的解析および遺伝子への介入による解析を行い、新しい概念・新しい治療標的の創出を目指し、患者検体を用いた検討まで行っている。また、機械学習・新規機器の開発による新しいテクノロジーを用いた新しい解析法がなし得る新規事象の創出も目指しています。


主要論文

Hasumi E, Fujiu K, Chen Y, Shimuzu Y, Oshima T, Matsunaga H, Matsuda J, Matsubara TJ, Fukuma N, Yuziang Liu, Sugita J, Nakayama Y, Saga A, Oguri G, Kojima T, Maru Y, Shoda M, Komuro I, Heart failure grading using single-lead electrocardiography, medRxiv. doi: 10.1101/2020.10.08.20209700

Nakayama Y, Fujiu K, Yuki R, Oishi Y, Morioka M, Isagawa T, Oshima T, Matsubara T, Sugita J, Kudo F, Kaneda A, Endo Y, Nakayama T, Nagai R, Komuro I, Manabe I, A long noncoding RNA regulates inflammation resolution by mouse macrophages through fatty acid oxidation activation, Proc. Natl. Acad. Sci. USA, Jun 2020, 202005924. doi: 10.1073/pnas.2005924117

Adachi H, Kawamura Y, Nakagawa K, Horisaki R, Sato I, Yamaguchi S, Fujiu K, Waki K, Noji H, Ota S, Use of Ghost Cytometry to Differentiate Cells with Similar Gross Morphologic Characteristics, Cytometry, Cytometry A. 2020 Apr;97(4):415-422. doi: 10.1002/cyto.a.23989.

Asakawa M, Itoh M, Suganami T, Sakai T, Kanai S, Shirakawa I, Yuan X, Hatayama T, Shimada S, Akiyama Y, Fujiu K, Inagaki Y, Manabe I, Yamaoka S, Yamada T, Tanaka S, Ogawa Y, Upregulation of cancer-associated gene expression in activated fibroblasts in a mouse model of non-alcoholic steatohepatitis, Sci Rep, 2019 Dec 20;9(1):19601. doi: 10.1038/s41598-019-56039-0.

Okamoto H, Yoshimatsu Y, Tomizawa T, Kunita A, Takayama R, Morikawa T, Komura D, Takahashi K, Oshima T, Sato M, Komai M, Podyma-Inoue KA, Uchida H, Hamada H, Fujiu K, Ishikawa S, Fukayama M, Fukuhara T, Watabe T. Interleukin-13 receptor α2 is a novel marker and potential therapeutic target for human melanoma. Sci Rep. 2019 Feb 4;9(1):1281.

Ota S, Horisaki R, Kawamura Y, Ugawa M, Sato I, Adachi H, Yamaguchi S, Fujiu K, Waki K, Noji H, Response to Comment on “Ghost cytometry”, Science, 2019, Vol. 364, Issue 6437, eaav3136.

Ota S, Horisaki R, Kawamura Y, Ugawa M, Sato I, Hashimoto K, et al. Ghost cytometry. Science. 2018 Jun 15;360(6394):1246-51.

Fujiu K, Shibata M, Nakayama Y, Ogata F, Matsumoto S, Noshita K, et al. A heart-brain-kidney network controls adaptation to cardiac stress through tissue macrophage activation. Nat Med. 2017 May;23(5):611-22.

Ogata F, Fujiu K, Matsumoto S, Nakayama Y, Shibata M, Oike Y, et al. Excess Lymphangiogenesis Cooperatively Induced by Macrophages and CD4(+) T Cells Drives the Pathogenesis of Lymphedema. J Invest Dermatol. 2016 Mar;136(3):706-14.

Hachiya R, Shiihashi T, Shirakawa I, Iwasaki Y, Matsumura Y, Oishi Y, et al. The H3K9 methyltransferase Setdb1 regulates TLR4-mediated inflammatory responses in macrophages. Sci Rep. 2016 Jun 28;6:28845.

Tan X, Fujiu K, Manabe I, Nishida J, Yamagishi R, Terashima Y, et al. Choroidal Neovascularization Is Inhibited in Splenic-Denervated or Splenectomized Mice with a Concomitant Decrease in Intraocular Macrophage. PLoS One. 2016;11(8):e0160985.

Tan X, Fujiu K, Manabe I, Nishida J, Yamagishi R, Nagai R, et al. Choroidal neovascularization is inhibited via an intraocular decrease of inflammatory cells in mice lacking complement component C3. Sci Rep. 2015 Oct 28;5:15702.

Noda S, Asano Y, Nishimura S, Taniguchi T, Fujiu K, Manabe I, et al. Simultaneous downregulation of KLF5 and Fli1 is a key feature underlying systemic sclerosis. Nat Commun. 2014 Dec 12;5:5797.

Fujiu K, Manabe I, Nagai R. Renal collecting duct epithelial cells regulate inflammation in tubulointerstitial damage in mice. J Clin Invest. 2011 Sep;121(9):3425-41.

Iwata H, Manabe I, Fujiu K, Yamamoto T, Takeda N, Eguchi K, et al. Bone marrow-derived cells contribute to vascular inflammation but do not differentiate into smooth muscle cell lineages. Circulation. 2010 Nov 16;122(20):2048-57.

Oishi Y, Manabe I, Tobe K, Ohsugi M, Kubota T, Fujiu K, et al. SUMOylation of Kruppel-like transcription factor 5 acts as a molecular switch in transcriptional programs of lipid metabolism involving PPAR-delta. Nat Med. 2008 Jun;14(6):656-66.

Nishimura G, Manabe I, Tsushima K, Fujiu K, Oishi Y, Imai Y, et al. DeltaEF1 mediates TGF-beta signaling in vascular smooth muscle cell differentiation. Dev Cell. 2006 Jul;11(1):93-104.

Oishi Y, Manabe I, Tobe K, Tsushima K, Shindo T, Fujiu K, et al. Kruppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. Cell Metab. 2005 Jan;1(1):27-39.

Fujiu K, Manabe I, Ishihara A, Oishi Y, Iwata H, Nishimura G, et al. Synthetic retinoid Am80 suppresses smooth muscle phenotypic modulation and in-stent neointima formation by inhibiting KLF5. Circ Res. 2005 Nov 25;97(11):1132-41.

   このページの先頭へ